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Cassava mosaic disease (CMD) seriously affects cassava yields in Africa. This study compared the spatial distribution of

CMD using three independent surveys in Rwanda and Burundi. Geostatistical techniques were used to interpolate the point-

based surveys and predict the spatial distributions of different measures of the disease. Correlative relationships were exam-

ined for 35 environmental and socio-economic spatial variables of which 31 were correlated to CMD intensity, with the

highest correlation coefficients for latitude ()0Æ47), altitude ()0Æ36) and temperature (+0Æ36). The most significant explana-

tory variables were entered in separate linear regression models for each of the surveys. The models explained 54%, 44%

and 22% of the variation in CMD. The residuals of the regression models were interpolated using kriging and added to the

regression models to map CMD across both countries. Significant differences were calculated in some areas after correcting

for interpolation error. An important explanation of the differences is interaction between the CMD pandemic and the dates

of the three surveys. Large relative prediction errors obtained in the regression kriging procedure show the need to improve

the survey design and decrease measurement error. Improved maps of crop diseases such as CMD could aid targeting of con-

trol interventions and thereby contribute to increasing crop yields. This study validated the unique character of each of the

survey approaches adopted and underlines the importance of specific interpretation of results for CMD management. The

study emphasizes the need for optimization of sampling designs and survey protocols to maximize the potential of regression

kriging.
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Introduction

Agricultural production is often considered to be the main
factor determining food security in eastern Africa and else-
where in the tropics. Cassava is the main staple crop in east-
ern Africa in terms of production and third in terms of
value (FAO, 2009). However, cassava yields are greatly
reduced by cassava mosaic disease (CMD) (Thresh et al.,
1994). CMD is caused by Cassava mosaic Geminiviruses
(Bock & Woods, 1983), which are disseminated through
planting infected cuttings and spread by the whitefly vector,
Bemisia tabaci (Storey & Nichols, 1938). CMD became an
increasing problem in cassava-growing areas of the Lake
Victoria Basin of East Africa during the 1990s (Legg et al.,
2006). This was a consequence of the region-wide spread
of a severe virus variant and associated ‘super-abundant’
populations of the whitefly vector (Legg & Thresh, 2000;
Legg et al., 2006).
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First reports of the severe ‘pandemic’ of CMD were
made from Rwanda and Burundi in the early 2000s (Legg
et al., 2001; Bigirimana et al., 2004) following previous
epidemics in Uganda and Kenya. Prior to the spread of the
CMD pandemic into Rwanda and Burundi, CMD inci-
dences were moderate to low, symptoms generally mild
and African cassava mosaic virus (ACMV) was the pre-
dominant CMD-causing virus (Legg et al., 2006). Follow-
ing the beginning of the pandemic in these two countries,
incidences increased, symptoms became more severe, and
infections by the pandemic-associated East African cassava
mosaic virus-Uganda (EACMV-UG) and mixed ACMV +
EACMV-UG infections began to predominate. Severe
CMD spread into Rwanda and Burundi from the north-
east, entering Rwanda from neighbouring Uganda in
1997, and entering Burundi from Rwanda and Tanzania
in 2003 (Legg et al., 2006). By 2007, severe CMD had
affected all regions of Rwanda (Kanyanga et al., 2007)
and all but the far south-west of Burundi (Bigirimana
et al., 2007). Large-scale initiatives to control the CMD
pandemic were initiated in Uganda in the early 1990s
using virus-resistant varieties (Otim-Nape et al., 2000) and
were subsequently extended throughout East and Central
Africa (Legg et al., 2005). Consequently, in parts of the
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region, particularly Uganda and western Kenya, where
control efforts have been underway for longest, CMD is
no longer considered to be the major production con-
straint for cassava production (Fermont et al., 2009).
However, a recent study of six countries in the Great
Lakes region revealed that most farmers still consider the
disease to be the main constraint to cassava production
(Kimetrica, 2008).

In order to design strategies to control the CMD pan-
demic, it is essential to gain insights into the spatial distribu-
tion of the disease. Over the past decade a number of
surveys by socio-economists and biologists have attempted
to describe the geographic spread of CMD and estimate its
impact on overall production and food security (Sseruwagi
et al., 2004; Legg et al., 2006; Abele et al., 2007). Compar-
ing point observations on the incidence and severity of the
disease on individual farms is difficult because the observa-
tions recorded different facets of CMD and were taken at
different times and at different locations. This problem is
often dealt with by averaging farm data by administrative
units (Bouwmeester et al., 2009). In Uganda, disease inci-
dence in banana has been mapped and linked to adminis-
trative units in order to describe the temporal spread of
disease (Tusheremereirwe et al., 2006). A similar approach
was used to describe the early spread of the CMD pan-
demic in East and Central Africa (Legg, 1999). An alterna-
tive, more accurate method of transforming disease data
from points to surfaces is geostatistical interpolation (De
Smith et al., 2007; Bouwmeester et al., 2008). A wide range
of geostatistical techniques is available (Goovaerts, 1997)
that have been used in research areas of soil science
(McBratney et al., 2000), livelihood analysis (Cecchi et al.,
2010), climatology (Hijmans et al., 2005) and epidemiol-
ogy (Clements et al., 2006). In crop science, geostatistics is
used in describing patterns of pathogens and crop diseases
(Chellemi et al., 1988; Gandah et al., 2000; Stonard et al.,
2010) and to describe CMD patterns in the Ivory Coast
(Lecoustre et al., 1989). However, these studies do not uti-
lize auxiliary information on factors that could influence
disease distribution. The accuracy of geostatistical interpo-
lation can be improved by using relationships between the
variable to be predicted and readily available predictor
maps (Hengl et al., 2004; Kempen et al., 2009). So far, this
so-called regression kriging technique has not been used to
compare the spatial spread of crop diseases of different sur-
veys across large areas. However, such comparisons could
be useful for monitoring and implementing management
strategies to prevent disease expansion because it makes
possible upscaling and validation of survey information to
large areas.

Different survey techniques are currently applied to help
understand the spread of crop diseases through a popula-
tion of farms and its effect on crop production. This study
explored whether three very different survey approaches
resulted in similar disease patterns, after standardization of
the observations. The degree of divergence or similarity
revealed the comparability of the approaches and hence
determined whether the different assessments could be used
interchangeably. The findings could have important impli-
cations for the design, implementation and interpretation
of future disease surveys. The overall objective of this study
was therefore to analyse the spatial comparability of differ-
ent survey approaches. Three recent surveys that assessed
the severity of CMD in Rwanda and Burundi and in neigh-
bouring countries were selected for comparison.
Materials and methods

Study area

The landscapes of Rwanda and Burundi are both strongly
influenced by the Albertine rift that stretches from north to
south in the western part of the countries (Fig. 1). Although
the countries are relatively small in area they have a diverse
agro-ecology, dictated by the variability in topography and
climatic conditions. For example, the countries have an
average annual precipitation of 1176 mm with local mini-
mum values of 851 mm and maximum values of 2178 mm
(Hijmans et al., 2005). The mean annual temperature in
the countries is 19Æ2�C, with local minimum values of
5Æ6�C and maximum values of 25Æ5�C (Hijmans et al.,
2005). Soil fertility is highly variable due to the topography
and volcanic activity in parts of the area. Because most of
the farming in Rwanda and Burundi is low-input subsis-
tence production, the region is particularly vulnerable to
the effects of crop diseases like CMD.
Survey datasets

The data used in this study were collected in surveys of
Rwanda and Burundi, and in adjacent parts of Tanzania,
Kenya, Uganda and the Democratic Republic of Congo
(DRC). The studies differed in their sampling density
(Table 1) and distribution (Fig. 1). The non-uniform sam-
pling designs were not spatially balanced, mainly as a result
of financial and temporal constraints. The designs can be
described as a mixture of purposive (targeting distinct
areas), random (within targeted areas) and convenience
sampling (along roads) (Binns et al., 2006; De Gruijter
et al., 2007). All datasets have a limited coverage of north-
ern Rwanda where the high altitude is unfavourable for
cassava cultivation.

Each survey recorded the relevant disease parameter and
the geographic coordinates of the observation using a hand-
held geographic positioning system (accuracy approxi-
mately 20 m). From the original surveys a subsample that
covered Rwanda and Burundi was selected because these
countries were spatially best represented in all surveys
(Fig. 1; Table 1). All observation sites in DRC, Uganda and
Tanzania that were within 50 km of the national borders
of Rwanda and Burundi (area within the dotted line in
Fig. 1a) were included to limit border effects and favour
interpolation over extrapolation. Relatively many sites were
located on the shores of Lakes Tanganyika and Kivu. Due
to errors in geo-referencing of sites or by imprecise mapping
of the lakeshore, some of the sites appeared to be within
the lakes and were removed from the datasets. Some sites
had identical geospatial references. If the CMD parameter
Plant Pathology (2012) 61, 399–412



Table 1 Number of sites sampled in the three cassava mosaic disease

surveys. The buffer zone corresponds to the area of the adjoining countries

Democratic Republic of Congo, Uganda and Tanzania that lie within 50 km

of the national borders of Rwanda and Burundi

Description of observation sites C3P-D C3P-S GLCI

In initial survey (raw data) 1967 2279 7624

Inside Rwanda, Burundi and buffer zone 786 942 3754

Observation sites used in this study 775 871 3667

Inside Rwanda 199 367 1354

Inside Burundi 306 207 1508

Outside Rwanda and Burundi but

inside buffer zone

270 297 805
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Figure 1 Study area (Rwanda and Burundi) with altitude (a) and sampling sites (dots) of three surveys: C3P-D (b), C3P-S (c) and GLCI (d).

Dotted line in (a) represents area in the adjacent countries of DRC, Uganda and Tanzania within which observations were included in the

analysis.

Comparison of crop virus disease patterns in Rwanda and Burundi 401
at those locations was identical then one of the two obser-
vations was removed, otherwise both observations were
removed. All further analyses were based on the survey
Plant Pathology (2012) 61, 399–412
observations within this subsample. The three datasets were
initially geo-referenced in WGS84 coordinates and were
transformed to a UTM projection zone 36S.

The first survey (C3P-D) was conducted between January
2006 and February 2007. It aimed to assess the spatial
distribution of CMD and of the pandemic-associated
EACMV-UG. Only the main cassava-growing areas were
surveyed (Bigirimana et al., 2007) with a preference for
those along roadsides. Young fields, 3–6 months old, were
selected for sampling. CMD incidence and severity were
recorded by visually examining 30 plants at each sampling
site that were selected along representative transects along
two diagonals in the form of an ‘X’. CMD incidence was
defined as the percentage of infected plants (0–100). CMD
severity was the average of the severity scores for the
30 plants. Severity scores were categorical and ranged
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from 1 for no symptoms to 5 for the most severe damage
(Sseruwagi et al., 2004). Symptomless plants (severity score
1) were excluded when calculating average severity. As
cassava production losses are greatest when both incidence
and severity are high (Thresh et al., 1994), a measure of
disease ‘intensity’ was calculated as the product of CMD
incidence and CMD severity. The parameter used in this
study was CMD intensity as it relates better to socio-
economic measures of CMD than incidence or severity
alone.

The second survey (C3P-S) was conducted between
May 2006 and August 2007 (Abele et al., 2007). Cassava
and ⁄or banana-growing areas were targeted in an attempt
to characterize the socio-economic status of farmers. At
each sampling site, farmers were asked how much of the
previous season’s cassava production had been lost as a
result of CMD. The parameter used in this study was
the farmer estimate of the percentage production loss
(0–100).

The third survey (GLCI) was conducted between May
and August 2008 to assess the impact of the viruses CMD
and cassava brown streak disease (CBSD) (Kimetrica,
2008). The sites were randomly selected within areas where
project partners (Catholic Relief Services and Food and
Agricultural Organization of the United Nations) were
active. While the sites of the C3P-D and the C3P-S surveys
were typically scattered over the area of interest, the GLCI
sites were more clustered, with groups of about 10 observa-
tions per village assessed. Each farmer was shown pictures
of symptoms associated with CMD and asked if these were
seen on their farm. The parameter used in this study was
the positive or negative response of the farmer which was
interpreted as prevalence of CMD.

The three assessments of CMD were made with contrast-
ing methodologies. It is difficult to quantify the accuracy
and confidence of the variables that were recorded without
doing additional validation surveys. However, it is likely
that C3P-D had the greatest accuracy, because each record
of incidence and severity was based on 30 sampled plants
assessed by trained observers. In contrast, the CMD
assessed in the socio-economic C3P-S and GLCI surveys
reflected the views of individual farmers. In such situations,
elements such as the phrasing of the question or the knowl-
edge of the farmer can significantly influence the response.
However, it is significant that visual aids were used during
the socio-economic surveys, as standard images of cassava
plants infected by CMD were shown to farmers to aid rec-
ognition.

The current study aims to predict and compare the
spread of CMD across the two countries using the three dif-
ferent methods of CMD assessment. Inevitably the imper-
fect accuracy of the methods of assessment will account for
at least part of the differences between the resulting predic-
tions. Despite this, the value of the comparisons is not
diminished because all approaches have their intrinsic
advantages and disadvantages. Socio-economic variables
may be less accurate, yet they provide a vital indication of
farmer perception, which is an important measure of the
overall impact of a crop disease.
Predictor maps

To improve the spatial interpolation of CMD, 10 publicly
available predictor maps were selected (Fig. 2; Table 2).
These predictor maps describe the environmental and
socio-economic conditions of the study area and potentially
explain part of the variability in CMD. All predictor maps
were resampled to a 1 km resolution using ARCGIS (Ver-
sion 9Æ3). Resampling is a common GIS technique which is
used to convert a raster map from one resolution to
another. Most of the predictor maps were originally at a
much coarser resolution, which may cause large differences
between neighbouring cells at the borders of the coarse grid
cells. To minimize these border effects and take into
account that the influence of some predictor maps on
CMD can carry over longer distances than the resolution,
these were smoothed with a local sample mean within
circles of 2, 5, 10 and 20 km radius. On half of the predic-
tor maps smoothing with a radius of 2 km had limited
effect, as their original resolution was 5 arc min (approxi-
mately 10 km). Nevertheless, the smoothed versions were
adopted to maintain uniformity. Most predictor maps were
measured on a continuous scale, with the exception of
nutrient availability (FERT) that consisted of four classes
indicating constraints for crop suitability (Fischer et al.,
2009). FERT was represented in the regression analysis by
binary dummy variables for each of the classes. All predic-
tor maps were initially in the geographic WGS84 coordi-
nate system and were transformed to a UTM projection
zone 36S to ensure equal areas of all cells. Because of the
proximity to the equator, the distortion caused by this
transformation was limited.
Data analysis

The CMD observations were interpolated with regression
kriging, which is a two-step procedure, using the R soft-
ware (Version 2Æ7Æ2; Pebesma, 2004). First, the relationship
between CMD and the predictors was quantified using
multiple linear regression. The regression explained part of
the variation of CMD, which in the geostatistical literature
is often referred to as ‘drift’ (Hengl et al., 2004). Secondly,
the residuals from the regression analysis were interpolated
with simple kriging. Finally the drift and the interpolated
residuals were summed, to calculate a prediction map
(Odeh et al., 1994). The interpolated maps for each of the
surveys and associated prediction error variance maps were
compared visually and quantitatively.

A multiple linear regression analysis was applied to assess
the relationship between the response variable CMD and
all predictor maps using the SP module of the R software
(Dalgaard, 2002). Pearson’s correlation coefficients were
calculated between CMD and 35 predictor maps that were
all treated as deterministic quantities. These included the
original predictor maps (Table 2), their smoothed descen-
dants, the ‘dummy’ variables derived from the nutrient
availability map and latitude and longitude. Initially, an
overlay was created of the survey data and the 35 maps.
This resulted in a dataset with the CMD scores and the
Plant Pathology (2012) 61, 399–412
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Figure 2 Predictor maps used in regression kriging. CULT, cultivated land as percentage of total land area per cell; DEM, elevation (m.a.s.l.);

TEMP, average annual temperature in period 1950–2005 (�C); FERT, nutrient availability (scale of 1–4); LGP, length of growing period

(day ⁄ year); POP, human population density (number km)2); PREC, average annual precipitation in period 1950–2005 (mm); FOR, forested

land as percentage of total land area per cell; URB, urbanized land as percentage of total land area per cell; WAT, water surface as

percentage of total land area per cell.

Comparison of crop virus disease patterns in Rwanda and Burundi 403
values of the 35 predictor maps for each observation loca-
tion. The extreme values were inspected within the GIS sys-
tem and found to result from logical extremes in the
predictor maps (e.g. highly populated areas, densely for-
ested areas, upland areas, etc.). In the next step, scatter
plots were made illustrating the correlation between CMD
and each of the predictors. At first, all 35 predictors were
entered into the regression model. Next, stepwise regression
was used to simplify the model and reduce the number of
predictors. Predictors that insufficiently increased the
Akaike Information Criterion were removed (Crawley,
2007). Further reduction of predictors was necessary,
because from a multi-colinearity perspective it was not
desirable to retain both the original predictor and its
Plant Pathology (2012) 61, 399–412
smoothed descendants in the same model. No automated
process was available that disqualified predictors that
originated from the same map. Consequently, the individ-
ual correlation and significance of each predictor was taken
into account in a manual selection process. Only the most
correlated (Table 3) and significant predictors were
included in the final regression model (Table 4). Finally, the
combined fit of the regression models could be increased by
including interactions between predictors. Because no auto-
mated method was available to select the interactions
between the many combinations, pairs were selected on
subjective grounds (i.e. using expert judgment). A trial and
error approach was used to determine if the combined fit
could be improved by adding different pairs of predictors.



Table 2 Characteristics of the predictor maps included in the regression analysis; note that not all were used in the final models

Code Description

Original

resolution Smoothing Source

CULT Cultivated land as percentage of total land

area per cell

5 arc min Circles with radius 2, 5, 10 or 20 km Fischer et al. (2009)

DEM Elevation (m.a.s.l.) 3 arc s NA CGIAR, (2008)

TEMP Average annual temperature in period

1950–2005 (�C)

30 arc s NA Hijmans et al. (2005)

FERT Nutrient availabilitya 5 arc min NA Fischer et al. (2009)

LGP Length of growing periodb (day ⁄ year) 3 arc min NA ERGO (2005)

POP Human population density (number km)2) 2Æ5 arc min Circles with radius 2, 5, 10 or 20 km SEDAC (2009)

PREC Average annual precipitation in period

1950–2005 (mm)

30 arc s NA Hijmans et al. (2005)

FOR Forested land as percentage of total land

area per cell

5 arc min Circles with radius 2, 5, 10 or 20 km Fischer et al. (2009)

URB Urbanized land as percentage of total land

area per cell

5 arc min Circles with radius 2, 5, 10 or 20 km Fischer et al. (2009)

WAT Water surface as percentage of total land

area per cell

5 arc min Circles with radius 2, 5, 10 or 20 km Fischer et al. (2009)

aNutrient availability classes based on soil texture, structure, pH and total exchangeable bases, with class value 1 = no constraint,

2 = moderate, 3 = severe, 4 = very severe.
bLength of growing period is based on the ratio evapotranspiration ⁄ precipitation.
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Regression kriging was used to compare patterns of
CMD. This does not use the observations directly but rather
the residuals from the regression analysis. The residuals
are defined as the real observed CMD parameter minus
the value predicted by regression. Kriging predicts at
unobserved locations by taking a weighted average of the
observations, whereby the weights are derived from the
degree of spatial correlation. The spatial correlation is char-
acterized by a semivariogram, which shows the magnitude
of spatial variation as a function of distance (Goovaerts,
1997). A semivariogram is characterized by the nugget, sill,
range, number of lags and lag size. The nugget represents
the variation at a spatial infinitely small scale and can be
caused by a true variation in the measurement and ⁄or by
measurement error. The sill represents the maximum semi-
variance that can be obtained from the measurements.
The range represents the distance beyond which there is no
spatial autocorrelation. The number of lags and the lag size
refer to the distances between the measurements that are
taken into account when fitting the semivariogram model.
For each survey, a nested structure of two spherical models
was applied to fit the semivariogram model. The parame-
ters of the semivariogram models were obtained with
weighted least squares fitting of nested semivariogram
structures (Bivand et al., 2008). A nested model was used to
describe the autocorrelation of the observations to account
for the correlation between observations at greater dis-
tances. All observations were included in the neighbour-
hood definition. The semivariogram fitting and kriging was
done with the GSTAT module of the R software (Pebesma,
2004). Negative values were predicted at some locations in
the C3P-D and C3P-S prediction maps. As these values
were not realistic they were set to 0. Likewise, some pre-
dicted values were greater than the theoretical maximum of
the measured values (CMD scores above 100% in C3P-S
and above 1 in GLCI). These overestimates were set to the
maximum values of the respective surveys.

The accuracy of the spatial predictions was determined
by calculating kriging variance maps. Kriging predicts the
response variable CMD for every cell. It also calculates the
kriging variance as an indicator of the prediction error.
A prediction with a large kriging variance has poor accu-
racy. The kriging variance is influenced by the sampling
density, the sampling pattern and by the semivariogram
(Goovaerts, 1997). The overall quality of the prediction
map was expressed by relating the mean kriging variance
to the mean prediction. Kriging standard deviation maps
were derived by taking the square root from the kriging
variance maps. This process facilitated comparison between
the maps because the predictions and standard deviations
have the same units.
Comparison between surveys

The CMD prediction maps yielded CMD scores in different
units. To make the maps comparable the CMD scores
were standardized. This was justified from a qualitative
point of view, as in this study the main interest was the
relative CMD scores and not so much their absolute values.
Standardized values were calculated by subtracting mean
values of all predictions from the predicted values and
dividing the outcome by the standard deviation of the
predicted values.

The standardized predictor maps allowed two compari-
sons to be made between the prediction maps. First, the
standardized maps were pair-wise subtracted from one
another to reveal the areas with differences in predicted val-
ues. Secondly, by invoking the normality assumption, it is
Plant Pathology (2012) 61, 399–412



Table 4 Predictors used in the multiple regression analysis and

corresponding regression coefficients

Predictora C3P-D C3P-S GLCI

Intercept 3Æ34 2363*** 6Æ99***

Latitude – )0Æ000215*** )7Æ37E)07***

CULT05 )3Æ19*** – –

CULT10 – )0Æ466*** –

DEM )0Æ0932*** – –

FOR02 – )1Æ80*** –

FOR10 )4Æ08*** – –

LGP – – 0Æ00326***

PREC – )0Æ180*** –

TEMP 1Æ44*** )0Æ980*** 0Æ00150***

URB10 – – 0Æ00988*

WAT05 – – 0Æ00293***

WAT10 1Æ12** – –

PREC:CULT05 0Æ00257*** – –

DEM:FOR10 0Æ00230*** – –

DEM:FOR02 – )0Æ000782*** –

LGP:POP05 – )7Æ78E)05*** –

PREC:TEMP – 0Æ000948*** –

URB02:WAT02 – )0Æ0791*** –

DEM:FOR20 – – )1Æ57E)06***

POP20:PREC – – )2Æ73E)07***

Multiple R2 0Æ193*** 0Æ290*** 0Æ049***

aCULT, cultivated land as percentage of total land area per cell;

DEM, elevation in m.a.s.l.; TEMP, average annual temperature in

period 1950–2005; LGP, length of growing period; POP, human

population density; PREC, average annual precipitation in period

1950–2005; FOR, forested land as percentage of total land area per

cell; URB, urbanized land as percentage of total land area per cell;

WAT, water surface as percentage of total land area per cell.

The numbers added to the abbreviations: 02, 05, 10 or 20 indicate

the smoothing radius in km that was applied to the original

predictor map.

Significance levels: *P £ 0Æ1; **P £ 0Æ01; ***P £ 0Æ001. The sign ‘:’

indicates the interaction between two terms.

Table 3 Pearson correlation between the cassava mosaic disease

parameters in the C3P-D, C3P-S and GLCI datasets and the predictors

Predictora C3P-D C3P-S GLCI

Longitude )0Æ15*** )0Æ02 )0Æ08***

Latitude )0Æ10** )0Æ47*** )0Æ11***

CULT )0Æ04 )0Æ06 )0Æ02

CULT02 )0Æ04 )0Æ05 )0Æ02

CULT05 )0Æ04 )0Æ05 )0Æ02

CULT10 )0Æ03 )0Æ07* )0Æ03*

CULT20 )0Æ04 )0Æ04 )0Æ05**

DEM )0Æ36*** )0Æ08** )0Æ08***

FERT1 0Æ12*** )0Æ18*** 0Æ08***

FERT2 )0Æ02 0Æ04 )0Æ05**

FERT3 )0Æ12** 0Æ10** )0Æ01

FERT4 0Æ06 0Æ06 0Æ01

FOR )0Æ02 )0Æ07* 0Æ07***

FOR02 )0Æ02 )0Æ08* 0Æ06***

FOR05 )0Æ01 )0Æ08* 0Æ07***

FOR10 0Æ01 )0Æ07* 0Æ07***

FOR20 0Æ05 )0Æ08* 0Æ07***

LGP 0Æ00 )0Æ17*** 0Æ09***

POP 0Æ02 )0Æ15*** )0Æ10***

POP02 0Æ01 )0Æ14*** )0Æ10***

POP05 0Æ02 )0Æ13*** )0Æ11***

POP10 0Æ02 )0Æ09* )0Æ11***

POP20 0Æ01 )0Æ03 )0Æ12***

PREC )0Æ05 0Æ01 0Æ07***

TEMP 0Æ36*** 0Æ10** 0Æ05**

URB )0Æ02 )0Æ08* )0Æ07***

URB02 )0Æ02 )0Æ08** )0Æ09***

URB05 )0Æ02 )0Æ08** )0Æ10***

URB10 0Æ00 )0Æ04 )0Æ10***

URB20 )0Æ03 )0Æ01 )0Æ13***

WAT 0Æ14*** )0Æ01 0Æ05**

WAT02 0Æ15*** )0Æ02 0Æ06**

WAT05 0Æ15*** 0Æ00 0Æ07***

WAT10 0Æ14*** )0Æ02 0Æ08***

WAT20 0Æ09** 0Æ00 0Æ09***

aCULT, cultivated land as percentage of total land area per cell;

DEM, elevation in m.a.s.l.; TEMP, average annual temperature in

period 1950–2005; FERT, nutrient availability; LGP, length of

growing period; POP, human population density; PREC, average

annual precipitation in period 1950–2005; FOR, forested land as

percentage of total land area per cell; URB, urbanized land

as percentage of total land area per cell; WAT, water surface as

percentage of total land area per cell.

The numbers added to the abbreviations: 2, 5, 10 or 20 indicate the

smoothing radius in km that was applied to the original predictor

map.

FERT class values: 1 = no constraint, 2 = moderate, 3 = severe,

4 = very severe.

Significance levels: *P £ 0Æ1; **P £ 0Æ01; ***P £ 0Æ001.
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possible to delineate those parts of the study area where the
absolute difference between two standardized predictions is
significantly greater than the interpolation error standard
deviation. These are areas where the magnitude of the dif-
ferences is unlikely to be explained by interpolation error
(i.e. P < 5%) and therefore highlight the areas of ‘real dif-
ference’. If interpolation errors were the only source of dif-
ferences and the standardized maps represented the same
Plant Pathology (2012) 61, 399–412
phenomenon (ZS), then the expected squared difference of
two standardized maps (A and B) satisfies:

E½ðẐS;AðxÞ � ẐS;BðxÞÞ2�
¼ E½ðẐS;AðxÞ � ZSðxÞ � ðẐS;BðxÞ � ZSðxÞÞÞ2�
¼ VarðẐS;AðxÞ � ZSðxÞÞ þ VarðẐS;BðxÞ � ZS ðxÞÞ
� 2 CovðẐS;AðxÞ � ZSðxÞ; ẐS;BðxÞ � ZSðxÞÞ
¼ VarðẐS;AðxÞ � ZSðxÞÞ þ VarðẐS;BðxÞ � ZSðxÞÞ
¼ r2

K;AðxÞ þ r2
K;BðxÞ

ð1Þ
where r2

KðxÞ is the kriging variance at location x for
the standardized maps. The covariance term was zero
because interpolation errors for the separate surveys
were independent.
Results

Figure 3 shows the distribution of the CMD parameters
that were assessed in the three surveys. In the C3P-D survey
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CMD intensity was widespread, with about 97% of all
fields being affected by the disease (Fig. 3a). In the C3P-S
survey a bimodal CMD distribution was present, where
about one-third of the farmers stated that they had experi-
enced <20% production loss, whereas about half of the
farmers perceived a loss >50% (Fig. 3b). In the GLCI survey
about 85% of farms were affected by the disease (Fig. 3c).

Correlations between CMD and most predictors were
predominantly weak (Table 3). In the C3P-S survey, CMD
was negatively correlated to latitude, indicating that CMD
increased from north to south. In the other two surveys the
correlation with latitude was weaker but remained nega-
tive. A negative correlation was also identified with longi-
tude, indicating that CMD increased from east to west. In
the C3P-D survey CMD was negatively correlated with alti-
tude. Consequently, as expected, CMD was positively cor-
related with temperature for all surveys and most strongly
for C3P-D.

A selection of predictors was used in the regression mod-
els (Table 4). In many cases the models’ combined fit could
be improved by adding interactions between predictors.
Only two-way interactions were taken into account. In the
C3P-D regression model, for example, precipitation
(PREC) was important only in combination with cultiva-
tion level (CULT05).
The coefficients of variation demonstrated that the best
fit was achieved for the C3P-S survey, where 29% of the
variation of CMD could be explained by the predictors.
The other R2 values were 19% for the C3P-D and only 5%
for the GLCI survey. The R2 also indicated the magnitude
of the residuals that are passed on to the kriging process
(i.e. if R2 is smaller, kriging might be more important in the
final prediction). Thus, the regression had more influence
on the final predicted CMD in the case of C3P-S than in
the case of GLCI.
Kriging

The semivariograms (Fig. 4; Table 5) demonstrated spatial
dependency between the residuals of the three datasets. All
semivariograms hada large nugget, indicating large variation
over short distances. In the C3P-D and C3P-S surveys the
nugget to sill ratio (56% and 59%) indicated moderate spa-
tialautocorrelation. IntheGLCIsurveythenugget tosill ratio
ofalmost80%indicatedaweakspatial autocorrelation.

Results from the regression kriging were depicted as pre-
diction maps of the response variable CMD (Fig. 5). In the
C3P-D map the disease severity appeared to be more con-
centrated in border areas, while the interior of Burundi had
relatively small values. This interior coincides with higher
elevation and lower temperatures in the mountains that
stretch from north to south. Altitude and temperature had
less predictive power in the C3P-S and GLCI predictions
(Table 3; Fig. 5). In Burundi the C3P-S and GLCI maps
appear to be fairly similar as these show larger concentra-
tions of the disease in the south. The spatial pattern of
CMD appears to be most homogeneous in the C3P-S map,
where the whole of Burundi, apart from a few areas along
the shore of Lake Tanganyika, had large CMD values. This
confirmed the correlation between the disease and latitude
in the C3P-S survey that was calculated in the regression
analysis (Table 3). The GLCI map is patchier with a block
structure inherited from the predictor maps with a coarse
resolution and relatively high correlation coefficients (e.g.
URB10 and POP20). The prediction results of the GLCI
map may be of limited value as the minimum kriging stan-
dard deviation (0Æ35 in Fig. 7) was large compared to the
spread in the predicted values (92% of the predictions are
in the range 0Æ7–1Æ0; Fig. 6c). In all maps CMD pressure
appeared to be less intense in northern Rwanda, which inci-
dentally, was sparsely sampled (Fig. 5).

The predicted values (Fig. 6) deviated from the measure-
ments in the original surveys (Fig. 3). The predicted values
in the C3P-D (Fig. 6a) shifted to the left where the mean
CMD value was 120 compared to 137 in the original
observations. The C3P-S predictions (Fig. 6b) still showed
the same bimodal distribution as the original survey
although, as expected, a substantial smoothing occurred
and the lower peak was clearly displaced to the right.
Whereas originally about a third of the farmers experienced
losses <20%, only 4% of the predicted values were so low.
While the original GLCI showed binary values (presence or
absence) the GLCI predictions (Fig. 6c) consisted of values
in between 0 and 1, which may be interpreted as the
Plant Pathology (2012) 61, 399–412
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Figure 4 Semivariograms of the regression residuals for C3P-D (a), C3P-S (b) and GLCI (c).

Table 5 Settings of the semivariogram lags and fitted semivariogram

model parameters

Setting C3P-D C3P-S GLCI

Number of lags 14 11 12

Lag size variablea variableb variablec

Nugget 3409 645 0Æ113

1st Sill 4259 1016 0Æ139

1st Range 15Æ9 25Æ0 20Æ0

2nd Sill 6138 1094 0Æ140

2nd Range 52Æ6 100Æ0 70Æ0

aLag boundaries at 2Æ5, 5, 7Æ5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90,

100 km.
bLag boundaries at 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 km.
cLag boundaries at 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90,

100 km.
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probability of CMD presence. Because CMD was prevalent
in the original data (Fig. 3c), the predicted CMD values for
GLCI are predominantly large, indicating that large parts
of the study area were affected by the disease.
Quality of prediction

The kriging standard deviation maps (Fig. 7) demonstrated
that the standard deviation was large when compared to
the range of the predicted values (Fig. 5). This is mainly
Plant Pathology (2012) 61, 399–412
caused by the large nugget effect that resulted from relative
large differences in CMD observations at short distances.
The standard deviation increased with distance to the
observation sites and maximum values occurred in areas
that were sparsely surveyed. This is particularly apparent
for the C3P-S study, where observations were clustered and
large parts of the study area were not sampled (Fig. 1). In
the GLCI assessment the range in standard deviations is
small, indicating that distance to observation sites had little
effect.
Survey comparisons

The standardized difference maps revealed large differ-
ences, shown by increasing colour intensity (Fig. 8). C3P-D
predicted higher values than the other two surveys in most
of the border areas, particularly along Lake Tanganyika in
south-western Burundi. In contrast, CMD intensity in the
interior of Burundi was remarkably low according to C3P-
D when compared to those predicted by C3P-S and GLCI.
Conspicuous are the areas of large differences in south-west
Rwanda that were caused by low CMD values in the GLCI
predictions. The blocky structure in the maps whenever
GLCI predictions were included results from the coarse
predictor maps.

The area of ‘real difference’ is represented by category
A in Figure 9. These areas often coincided with the areas
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of absolute high differences in CMD (Fig. 8). However, this
is not always so, because the variance of the prediction
error maps was also considered. The C3P surveys showed
several areas where CMD differed significantly between the
two surveys. Fewer significant differences occurred for
comparisons with GLCI predictions.

The absolute values of the difference grids show that pre-
diction maps of the C3P-S and GLCI were most similar, as
was the case when the absolute difference was scaled by the
maximum absolute difference (Table 6). The differences
between the surveys were relatively small, meaning that
none of the comparisons stood out with an exceptionally
small or large difference.
Discussion

Regression analysis showed that part of the variation in
CMD could be explained by environmental and socio-eco-
nomic predictor maps, although the influence was weaker
for the GLCI dataset than for the other two. This is not sur-
prising as CMD is spread by viruses transmitted by a white-
fly vector that is highly sensitive to the environmental
conditions (Gerling et al., 1986; Fargette et al., 1994).
Moreover, cassava is grown in agro-ecosystems that are
themselves greatly influenced by the environment. For
example, large parts of Rwanda and Burundi are at alti-
tudes too high and too cold for the effective cultivation of
cassava, and the intensity of cassava cropping decreases
with increasing altitude. This is indirectly highlighted by
the predictor maps of elevation and temperature that were
significantly and negatively correlated with CMD. The cor-
relation with latitude was demonstrated by all maps imply-
ing that the impact of CMD was greatest in the southern
part of the study region. The progression of the CMD pan-
demic in this region from north-east to south-west has been
well documented, and south-west Burundi was the last to
be affected (Legg et al., 2001, 2006; Bigirimana et al.,
2004). The correlation with longitude was weaker but also
follows this progression pathway. Interpolation with kri-
ging did not greatly improve the prediction of CMD. This
was a direct result of the high nugget: high variation in
observations at close range and random measurement
error. Both C3P surveys showed moderate autocorrelation
but in the GLCI survey the nugget dominated. Kriging
resulted in a considerable smoothing effect of the predic-
tions (Fig. 6) when compared to the original surveys
(Fig. 3). This is because kriging smooths predictions
towards the mean (Goovaerts, 1997).

The reasons for the limited accuracy of the prediction
maps could be attributed to the low sampling density of the
Plant Pathology (2012) 61, 399–412
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surveys and the high variation of measurements at close
range. These causes should be identified first so that they
can be incorporated in future sampling designs which
would result in more accurate maps. In general, increasing
the sampling density and ⁄or applying a more uniform
distribution of the observation sites could improve the
Plant Pathology (2012) 61, 399–412
accuracy of the prediction maps (Stein & Ettema, 2003).
However, in this case a more systematic survey design
would be hindered by the large size of the study area and
the practical difficulties that this raises. In addition, simply
increasing the sample size and density would probably not
improve accuracy much, as is highlighted by the large



Table 6 Spatial averages of differences in cassava mosaic disease

standardized predictions

Formula Description C3P-D and

C3P-S

C3P-D and

GLCI

C3P-S and

GLCI

abs (B)A) absolute difference 1Æ01 0Æ98 0Æ85
abs ðB�AÞ

max ðabs ðB�AÞÞ scaled absolute

difference

0Æ15 0Æ14 0Æ13
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minimum kriging standard deviation in the GLCI map
(Fig. 7). The high variation of measurements at close range
(i.e. large nugget) means that there are important factors
that vary on a local scale and ⁄or large measurement errors.
High variability in itself is not surprising as the ecology of
CMD suggests that there are many factors that cause local
differences in the impact of CMD, such as the relative
CMD susceptibility or resistance of the cassava cultivars
being grown, the virus species present, the abundance of the
whitefly vector, the cropping systems and farmer’s manage-
ment practices (Fargette & Thresh, 1994). Unfortunately,
predictor maps that potentially describe these factors were
not available. Measuring CMD at larger spatial supports
(averages over larger areas) may be a more adequate solu-
tion to tackling this problem, because such averaging will
lead to measurements from which local variability has
partly been removed (Goovaerts, 1997). Hence, these mea-
surements would likely be correlated more strongly with
the coarse predictor maps (i.e. improved regression results)
and would result in a smaller nugget to sill ratio (i.e.
improved kriging results). However, a survey must be tai-
lored to this and hence it was not possible to do this with
the available surveys. Measurement errors may be reduced
by harmonizing protocols and improved training of asses-
sors. The graded scale used in both C3P surveys was proba-
bly better suited for predicting CMD than the binary scale
used in the GLCI survey.

The prediction maps of the different surveys revealed
areas with large differences in CMD (Fig. 8). Despite these
large differences, only a small portion of the differences
was significant (Fig. 9) because the kriging interpolation
standard deviation (Fig. 7) was large in most of the study
area. The differences in predicted CMD were simply not
large enough to compensate for this spatial interpolation
error. Despite these shortcomings, two main areas were
identified with differences in CMD that could not be
explained by interpolation error and therefore must
be explained by other causes. The first area was along the
shore of Lake Tanganyika in the south-western part of
Burundi. It was characterized by significantly larger CMD
values in the C3P-D survey than in the other two surveys.
This might be explained when considering the nature of the
data types collected in the three surveys. Farmer responses
(GLCI and C3P-S) were based on historical recall, in con-
trast to field assessments (C3P-D) in which CMD was
recorded in ‘real-time’. Thus, a new severe disease outbreak
would be recorded by direct field assessments (C3P-D)
before growers begin to recognize its presence (GLCI) or
experience its impact on yields (C3P-S). The second area
included locations east and west of Kigali in central
Rwanda where the GLCI survey indicated very low values
as opposed to high values in both C3P surveys. This might
be explained by a systematic multiplication and distribution
campaign of a CMD-resistant variety in Central Rwanda in
recent years (G. Gashaka, Institut des Sciences Agronomi-
ques du Rwanda, Butare, Rwanda, unpublished data). The
effects of this campaign are likely to have been more evi-
dent in the GLCI survey, which was the last of the three
surveys to be conducted.

Regression kriging has the potential for widespread use in
the mapping and analysis of crop disease epidemics. Predic-
tor maps of environmental and socio-economic conditions
explained a significant part of the variance of CMD. Kriging
successfully standardized different disease observations at a
regional level and allowed comparisons to be made. Areas
of divergence were identified and could be explained. How-
ever, most areas were broadly comparable and not signifi-
cantly different because of the limited accuracy of the
predictions. Therefore, the need for optimization of sam-
pling designs and survey protocols should be emphasized, to
decrease prediction error and maximize the potential for the
application of regression kriging.

The results of this study suggest that it is risky to take
action based on the outcome of only one survey. As
demonstrated, different responses might be appropriate,
depending on the survey approach adopted. By comparing
the results of different surveys in a spatially explicit way,
this study validates the unique character of each of the sur-
vey approaches. It highlights the importance of choosing a
survey approach that is appropriate for the specific research
question to be addressed.
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